#include <Pooling.hpp>
|
| | MaxPool2d (const pooling_params_t ¶ms) |
| | Constructs the MaxPool2d layer. Requires pooling parameters that are functionally equivalent to the convolutional parameters. More...
|
| |
| tensor | get_indices () const |
| |
| std::vector< tensor > | forward (const std::vector< tensor > &input) |
| | Implements the forward pass. More...
|
| |
| std::vector< tensor > | operator() (const std::vector< tensor > &input) |
| | Implements the forward pass. More...
|
| |
◆ MaxPool2d()
| pytorch::MaxPool2d::MaxPool2d |
( |
const pooling_params_t & |
params | ) |
|
|
inline |
Constructs the MaxPool2d layer. Requires pooling parameters that are functionally equivalent to the convolutional parameters.
- Parameters
-
| params | Pooling parameters like window, stride, etc. |
◆ forward()
| std::vector<tensor> pytorch::MaxPool2d::forward |
( |
const std::vector< tensor > & |
input | ) |
|
|
inlinevirtual |
Implements the forward pass.
- Parameters
-
| input | The input array to be pooled |
- Returns
- The pooled array
Implements pytorch::Layer.
◆ get_indices()
| tensor pytorch::MaxPool2d::get_indices |
( |
| ) |
const |
|
inline |
◆ operator()()
| std::vector<tensor> pytorch::MaxPool2d::operator() |
( |
const std::vector< tensor > & |
input | ) |
|
|
inlinevirtual |
Implements the forward pass.
- Parameters
-
| input | The input array to be pooled |
- Returns
- The pooled array
Implements pytorch::Layer.
◆ indices
| tensor pytorch::MaxPool2d::indices |
|
private |
◆ params
| pooling_params_t pytorch::MaxPool2d::params |
|
private |
The documentation for this class was generated from the following file: