pytorch-inference
pytorch::MaxUnpool2d Class Reference

#include <Pooling.hpp>

Inheritance diagram for pytorch::MaxUnpool2d:
pytorch::Layer

Public Member Functions

 MaxUnpool2d (const pooling_params_t &params, const MaxPool2d *mp_ref)
 Constructs the MaxUnpool2d layer. Requires pooling parameters that are functionally equivalent to the convolutional parameters. More...
 
std::vector< tensor > forward (const std::vector< tensor > &input)
 Implements the forward pass. More...
 
std::vector< tensor > operator() (const std::vector< tensor > &input)
 Implements the forward pass. More...
 

Private Attributes

pooling_params_t params
 
const MaxPool2dmp_ref
 

Constructor & Destructor Documentation

◆ MaxUnpool2d()

pytorch::MaxUnpool2d::MaxUnpool2d ( const pooling_params_t &  params,
const MaxPool2d mp_ref 
)
inline

Constructs the MaxUnpool2d layer. Requires pooling parameters that are functionally equivalent to the convolutional parameters.

Parameters
paramsPooling parameters like window, stride, etc.

Member Function Documentation

◆ forward()

std::vector<tensor> pytorch::MaxUnpool2d::forward ( const std::vector< tensor > &  input)
inlinevirtual

Implements the forward pass.

Parameters
inputThe input array to be unpooled
Returns
The unpooled array

Implements pytorch::Layer.

◆ operator()()

std::vector<tensor> pytorch::MaxUnpool2d::operator() ( const std::vector< tensor > &  input)
inlinevirtual

Implements the forward pass.

Parameters
inputThe input array to be unpooled
Returns
The unpooled array

Implements pytorch::Layer.

Member Data Documentation

◆ mp_ref

const MaxPool2d* pytorch::MaxUnpool2d::mp_ref
private

◆ params

pooling_params_t pytorch::MaxUnpool2d::params
private

The documentation for this class was generated from the following file: