#include <Pooling.hpp>
|
| MaxUnpool2d (const pooling_params_t ¶ms, const MaxPool2d *mp_ref) |
| Constructs the MaxUnpool2d layer. Requires pooling parameters that are functionally equivalent to the convolutional parameters. More...
|
|
std::vector< tensor > | forward (const std::vector< tensor > &input) |
| Implements the forward pass. More...
|
|
std::vector< tensor > | operator() (const std::vector< tensor > &input) |
| Implements the forward pass. More...
|
|
◆ MaxUnpool2d()
pytorch::MaxUnpool2d::MaxUnpool2d |
( |
const pooling_params_t & |
params, |
|
|
const MaxPool2d * |
mp_ref |
|
) |
| |
|
inline |
Constructs the MaxUnpool2d layer. Requires pooling parameters that are functionally equivalent to the convolutional parameters.
- Parameters
-
params | Pooling parameters like window, stride, etc. |
◆ forward()
std::vector<tensor> pytorch::MaxUnpool2d::forward |
( |
const std::vector< tensor > & |
input | ) |
|
|
inlinevirtual |
Implements the forward pass.
- Parameters
-
input | The input array to be unpooled |
- Returns
- The unpooled array
Implements pytorch::Layer.
◆ operator()()
std::vector<tensor> pytorch::MaxUnpool2d::operator() |
( |
const std::vector< tensor > & |
input | ) |
|
|
inlinevirtual |
Implements the forward pass.
- Parameters
-
input | The input array to be unpooled |
- Returns
- The unpooled array
Implements pytorch::Layer.
◆ mp_ref
const MaxPool2d* pytorch::MaxUnpool2d::mp_ref |
|
private |
◆ params
pooling_params_t pytorch::MaxUnpool2d::params |
|
private |
The documentation for this class was generated from the following file: